# Millimeter-wave measurements of energetic-ion driven ion cyclotron harmonic waves in DIII-D

NA Crocker, KE Thome, JB Lestz, Al Zalzali, RO Dendy, WA Peebles, K Barada, R Hong, TL Rhodes, G Wang, L Zeng, WW Heidbrink and RI Pinsker

Presented at the PPPL Theory EP Seminar, Feb. 1 2023



Work supported by U.S. DoE grants and contracts DE-FC02-04ER54698, DE-FG02-99ER54527, DE-SC0019352, and DE-SC0020337. Also, RCUK Energy Programme grant no. EP/T012250/1 and within framework of EUROfusion Consortium, with funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053.



# Ion cyclotron range fast-ion driven instabilities may cause thermal transport & be used for fast-ion diagnosis

- Ion cyclotron emission (ICE) at  $f_{cb}$  harmonics frequently observed, typically with beam heating or significant fusion products (see e.g. reviews [K. McClements, NF 2015; N. Gorelenkov, New J. Physics 2016])
- Leading theory: ICE driven by Doppler-shifted cyclotron resonance with fast ions – aka magnetoacoustic cyclotron instability (MCI)
  [V.S. Belikov, Sov. Phys. Tech. Phys. 1976, R. Dendy, PoP 1994 p. 1918]
  - drive from distribution gradient w/resp. to  $v_{\perp}$  (anisotropy)
  - fast Alfven waves  $(k_{\perp}\rho_f\ll 1)$  & cyclotron harmonic waves  $(k_{\perp}\rho_f\gtrsim 1)$
- Alternatives must be considered e.g. drift loss cone instability, electrostatic instabiliies – must learn to distinguish from MCI [TFR Group, PRL 1979 and refs therein; Dendy, PoP 1994 p. 3407 and refs therein; Stix Waves in Plasmas 1992, p. 436; Farmer, Nucl. Fusion 2016]
- MCI waves may cause thermal transport or "energy channeling" ([Y. I. Kolesnichenko, NF 2020] and Refs. therein)
- "spectroscopy" using MCI waves constrains inferred fast-ion energy spectrum/spatial distribution
  - Indicates presence of resonant ions and anisotropy at resonance



### **Key Results**

- Doppler Backscattering (DBS) measurements show ICE  $\tilde{n}$  at  $2f_{ci}$  &  $3f_{ci}$  in the edge of DIII-D plasmas, at the top of the pedestal and in the SOL.
- The observed ICE  $\tilde{n}$  is shown to be high-k cyclotron harmonic waves or electrostatic waves
- The ICE  $\tilde{n}$  is shown to be radially extended, consistent with eigenmode or propagating wave
- The stability of the ICE  $\tilde{n}$  is influenced by ELMs consistent with drive by fast-ions and fast-ion ejection by ELMs



## Measurement technique



### Ion cyclotron range fluctuations measured with two instruments

- DBS system measures  $\widetilde{n}$ ; recently modified to extend frequencies to ion cyclotron range
  - 8 frequency DBS system: 55 75 GHz [W. A. Peebles, RSI 2010]
    - Core to edge depending on equilibrium  $n_e$  and B profiles
  - modified to split signals into low (LF) and high (HF) frequency bands using diplexer
  - HF DBS potentially sensitive to  $\tilde{n}$  with  $f \approx 16 75$  MHz
- Array of loops on wall measures edge ion cyclotron range  $ar{b}_{\phi}$ (1 - 200 MHz)
  - for results reported here, see [K. E. Thome, RSI 2018]
  - for recent upgrades enhancing ICE structure measurement capability, see [G. H. DeGrandchamp, RSI 2021] -  $\widetilde{m{b}}_{m{ heta}}$  added



# DBS system measures ICE $\widetilde{n}$ via scattering of mmwaves from plasma waves







- DBS =>  $\tilde{n}$  measured via scattering in two ways:
  - 1) Fast wave: low-k ( $k_{\theta}$  << 1 cm<sup>-1</sup>) mode ( $f = f_{ICE}$ ) modulates turbulence spectrum ( $f = f_{turb}$ )  $\Rightarrow$  sidebands:  $f_{\tilde{n}} = f_{turb} \pm f_{ICE}$
  - 2) Ion cyclotron harmonic (ICH) or electrostatic wave: high-k mode  $(k_{\theta} \sim 1-10 \text{ cm}^{-1})$  scatters mm-wave:  $f_{\tilde{n}} = +f_{ICE}$  or  $-f_{ICE}$ 
    - propagating wave makes peaks at f > 0 and f < 0 asymmetric
- Scattering governed by Bragg rules:  $\omega_{s}=\omega_{i}+\omega_{\tilde{n}}$  and  $\mathbf{k}_{s}=\mathbf{k}_{i}+\mathbf{k}_{\tilde{n}}$ 
  - $-\omega_{\tilde{n}}\ll\omega_i,\omega_s\Rightarrow\mathbf{k}_{\tilde{n}}\approx-2\mathbf{k}_i$



# Ion cyclotron emission observations



# 2<sup>nd</sup> harmonic ICE high-k observed at top of pedestal in H-mode

- Deuterium H-mode, reverse B<sub>T</sub>
  - $-R_{midout} = 2.23 \text{ m}, R_0 = 1.81 \text{ m}$
- $\tilde{n}$  measured at  $\rho$  = 0.87 (@ pedestal top)
- $\tilde{n}$  peaks at ~  $\pm$  20.5 MHz ~  $\pm$  2 $f_{ci}$ 
  - $f_{ci}$  ≈ 10.3 MHz,  $v_A$  ~ 3.4 x 106 m/s
  - $-\rho_{fast}\sim 3-4$  cm (species: D)
  - f exactly matches  $2f_{ci}$  just outside  $\rho = 1$
- Peaks are caused by scattering from plasma wave
  - Matching peaks observed at  $f_+ > 0$  and  $f_- < 0$  where  $f_- = -f_+$
- DBS scatters from  $k_{\theta}$  = 1.2 cm<sup>-1</sup>  $\Rightarrow$  peak is high-k wave: cyclotron harmonic wave or electrostatic wave
  - $k_{\theta}$  too large for Alfvén wave:  $\omega/v_A$ ~0.4 cm<sup>-1</sup>

Unequal peaks at  $f_-$ ,  $f_+ \Rightarrow$  high k wave



spectra are denoised by background subtraction



### ICE frequency $\propto f_{ci}$ at last closed flux surface over large BT ramp



- $f \approx 2f_{ci}$  at last closed flux surface (LCFS) during large  $B_T$  ramp,  $\Delta B_T/B_T \approx 18 \%$
- destabilizing fast-ion resonance near LCFS (if  $k_{\parallel} \sim 0$ )  $\Rightarrow$  fast-ion loss boundary enhances anisotropy, drive?

# 2<sup>nd</sup> harmonic ICE at pedestal-top observed to be radially broad

- $2f_{ci}$  peak seen in outer 4 channels (out of 8):  $\rho$  = 0.63 0.87. Not seen  $\rho$  < 0.63
  - same frequency all channels => "eigenmode" or propagating wave
  - strong peaks at  $f = \pm 2 f_{ci}$
  - asymmetric power consistent with scattering:  $\tilde{n}(+2f_{ci}) \neq \tilde{n}(-2f_{ci})$
- $\rho$  = 0.63 0.87  $\Rightarrow$  radially broad:  $\Delta R \gtrsim$  7 cm = a/6 ( $a = R_{midout} - R_0$ )
  - "≳" because no measurements  $\rho > 0.87$
  - also,  $\Delta R \gtrsim 2 \rho_{fast}$





# DBS coverage establishes radial extent and $k_{\perp}$ limits of pedestal-top 2<sup>nd</sup> harmonic ICE



- Mode not observed by high frequency channels (67.5 75 GHz)  $\Rightarrow$  mode not present  $\rho$  < 0.63
  - All channels probe similar  $k_{\theta}$  at cutoff  $(k_{\theta} \sim 1.2 2.9 \text{ cm}^{-1}) \Rightarrow \text{wave seen}$  by outer channels might be seen by inner channels if present in core
- High frequency channels probe  $k_{\perp} > \sim 10$  cm<sup>-1</sup> in outer region ( $\rho \geq 0.63$ ): wave not detected  $\Rightarrow$  wave  $k_{\perp} < \sim 10$  cm<sup>-1</sup>



# 2<sup>nd</sup> & 3<sup>rd</sup> harmonic high-k ICE observed in H-mode scrape off layer (SOL)

#### Deuterium H-mode

- $-R_{midout} = 2.27 \text{ m}, R_0 = 1.73 \text{ m}$
- $\tilde{n}$  measured at  $\rho$ =1.06 = SOL
- $\tilde{n}$  peaks at  $\pm 23, \pm 35$  MHz  $\sim \pm 2f_{ci}, 3f_{ci}$ 
  - $-\rho_{fast} \sim 2$  cm (species: D)
  - $f_{ci}$  ≈11.8 MHz,  $v_A$  ~ 1.2 x 10<sup>7</sup> m/s
- Peaks are caused by scattering from plasma wave
  - Matching peaks at  $f = f_+ > 0$  and  $f = f_- < 0$  where  $f_- = -f_+$
- DBS scatters from  $k_{\theta}$  = 2 cm<sup>-1</sup>  $\Rightarrow$  peak is high-k wave: cyclotron harmonic wave or electrostatic wave
  - $k_{\theta}$  too large for Alfvén wave:  $\omega/v_{A}\sim0.1-0.2~{\rm cm}^{-1}$

#### Unequal peaks at $f_-$ , $f_+ \Rightarrow$ high k wave





### ICE in SOL observed to be radially extended

- $2f_{ci}$ ,  $3f_{ci}$  peaks observed on 2 channels:  $\rho$  = 1.05, 1.06
  - same frequency all channels => "eigenmode" or propagating wave
  - strong peaks at  $f = \pm 2 f_{ci}$
  - asymmetric power consistent with scattering:  $\tilde{n}(+2f_{ci}) \neq \tilde{n}(-2f_{ci})$
- $\rho$  = 1.05, 1.06  $\Rightarrow$   $\widetilde{n}$  spatially extended:  $\Delta R \gtrsim 3/4$  cm
  - "≥" because only 2 channels available





### Distinct differences in DBS and Magnetic SOL ICE spectra





- $\tilde{n}$  and  $\tilde{\boldsymbol{b}}$  spectra show distinct differences
  - $\tilde{b}$  peak f lower than  $\tilde{n}$  peak f by ~ ½ MHz
- $\widetilde{n}$  modes not seen by tile loops on wall =>
  - DBS sensitive to high-k waves which may attenuate before reaching tile loops
  - Tile loop probably sees fast Alfvén waves with long wavelength not detected by DBS:  $\lambda = v_A/f \gtrsim 50$  cm





# Strong density gradient may play role in ICE mode characteristics and instability



- Strong density gradient at LCFS ( $ho_f/L_{n_e}\gtrsim 1$ ) may contribute to instability and mode characteristics  $L_{n_e}{\sim}\rho_{fast}$ 
  - see ion cyclotron drift instability ([Mikhailovskii and Timofeev, Zh. Eksp. Teor. Fiz. 44, 912 (1963)], [Hendel and Yamada, PRL 1974])
- Proximity to separatrix ⇒ loss cone ⇒ maybe important to instability
  - see drift-cyclotron loss-cone instability ([Stix, Waves in Plasmas, AIP, New York, 1962 p. 436], [Farmer and Morales, NF 2016])
- see discussion in [Dendy, PoP 1994 p. 3407] and refs. therein



### Edge ICE stability observed to be influenced by ELMs, consistent with fast-ion drive and fast-ion ejection by ELMs





- ELMs eject fast ions from the edge [M. García-Muñoz, NF 2013]
- Pedestal-top ICE amplitude transiently damps during ELMs ( $D_{\alpha}$ spikes)  $\Rightarrow$  consistent with depletion of edge fast-ions that excite the ICE by ejection [Cottrell NF 1993]
- SOL ICE amplitude transiently jumps during ELMs ( $D_{\alpha}$  spikes)  $\Rightarrow$ consistent with excitation by ejected fast-ions passing through SOL [S. G. Thatipamula, PPCF 2016], [K. E. Thome, NF 2019]



#### Conclusions

- DBS measurements show ICE  $\tilde{n}$  at  $2f_{ci}$  &  $3f_{ci}$  in the edge of DIII-D plasmas, at the top of the pedestal and in the SOL.
  - Edge magnetic also show ICE  $\tilde{\boldsymbol{b}}$  at  $2f_{ci}$  &  $3f_{ci}$  but the observed modes not the same as those observed by DBS
- The observed ICE  $\tilde{n}$  is shown to be high-k cyclotron harmonic waves or electrostatic waves
- The ICE  $\tilde{n}$  is shown to be radially extended, consistent with eigenmode or propagating wave:
  - SOL:  $\Delta R \gtrsim \frac{3}{4}$  cm
  - Top of pedestal:  $\Delta R \gtrsim 7$  cm  $\approx a/6$ ,  $\approx 2\rho_{fast}$
- The stability of the ICE  $\tilde{n}$  is influenced by ELMs consistent with drive by fast-ions and fast-ion ejection by ELMs
  - SOL:  $\tilde{n}$  transiently excited during ELM as ejected fast-ion pass through
  - Pedestal-top:  $\tilde{n}$  transiently damped during ELM as edge fast-ions depleted



### **Backup Slides**

### Density profile for pedestal-top ice case





### Density profile for SOLICE case



#### Preview of conclusions

- DBS measurements show ICE  $\tilde{n}$  at  $2f_{ci}$  &  $3f_{ci}$  in the edge of DIII-D plasmas, at the top of the pedestal and in the SOL.
  - Edge magnetic also show ICE  $\tilde{\pmb{b}}$  at  $2f_{ci}$  &  $3f_{ci}$  but the observed modes not the same as those observed by DBS
- The observed ICE  $\tilde{n}$  is shown to be high-k cyclotron harmonic waves or electrostatic waves
- The ICE  $\tilde{n}$  is shown to be radially extended, consistent with eigenmode or propagating wave:
  - SOL:  $\Delta R \gtrsim \frac{3}{4}$  cm
  - Top of pedestal:  $\Delta R \gtrsim 7$  cm  $\approx 0.2a$ ,  $\approx 2\rho_{fast}$
- The stability of the ICE  $\tilde{n}$  is influenced by ELMs consistent with drive by fast-ions and fast-ion ejection by ELMs
  - SOL:  $\tilde{n}$  transiently excited during ELM as ejected fast-ion pass through
  - Pedestal-top:  $\tilde{n}$  transiently damped during ELM as edge fast-ions depleted

